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Analysis of Discontinuities in Planar Dielectric
Waveguides: An Eigenmode
Propagation Method

Qing-Huo Liu, Member, IEEE, and Weng Cho Chew, Senior Member, IEEE

Abstract —In this paper the eigenmode propagation method is pro-
posed to analyze the discontinuity problems in planar dielectric wave-
guides. This new recursive algorithm is based on the numerical mode
matching method, but it uses less computation time and computer
memory, which makes the analysis of multiregion, vertically stratified
media much more effective. With this algorithm, the required computer
memory is independent of the number of regions in the problem, and the
computation time is linearly proportional to the number of regions.
Therefore, it is particularly suitable for the analysis of planar waveguide
discontinuities and waveguide bends. Using this method, we can analyze
larger problems which are impractical with the finite element method.
From the numerical examples given in the paper, it is demonstrated that
the computation time is linearly proportional to the number of disconti-
nuities, while the computer memory is almost a constant independent of
the number of discontinuities, N.

1. INTRODUCTION

ECAUSE of the importance of dielectric waveguide

discontinuities in many applications in optical and mil-
limeter-wave circuits, the analysis of these discontinuities has
been of major research interest for many years [1]-[21], [24],
[26], [29]-{32]. One difficulty encountered in the analysis of
planar waveguide discontinuity problems is the treatment of
the guided modes (or surface modes) and the radiation
modes which have a continuous spectrum. Marcuse 5] de-
rived a simple approximation for a small step at the junction
of two monomode slabs. For small steps, Clarricoats and
Sharpe [6] have applied the mode matching method to the
discrete modes at the junction, neglecting the continuous
radiation modes; Hockman and Sharpe [7] proposed the use
of the first-order variational solution which neglected the
backward radiation loss at the steps. A perturbation analysis
of dielectric gratings was presented by Peng and Tamir [8].
For large abrupt step discontinuity cases, Mahmoud and
Beal [9] have used the normalized Laguerre polynomials to
expand the continuous radiation spectrum and then applied
the mode-matching method to solve the problem. A mode-
matching method suggested by Brooke and Kharadly [10],
[20] introduces a metallic enclosure to the original waveguide
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structure in order to discretize the radiation spectrum. The
Laguerre transform has also been used by Shigesawa and
Tsuji [26] in analyzing open waveguide discontinuities. The
mode-matching method used by Hosono, Hinata, and Inoue
[19] approximates the waveguide structure with periodical
waveguide structure in the transverse direction so as to
discretize the continuous radiation modes.

In addition to the various kinds of mode matching meth-
ods, variational approaches have been applied successfully.
Morishita, Inagaki, and Kumagai [13] formulated a least-
squares boundary residual method with the use of a set of
“proper functions” (Gauss-Laguerre functions) to transform
the integral in continuous spectrum to a discrete summation.
The Ritz—Galerkin (RG) variational approach has been used
to analyze a step discontinuity by Rozzi [11] and subse-
quently to study the diffraction at the facet of a double
heterostructure injection laser and a cascade of step disconti-
nuities by Rozzi and in’t Veld [14], [15]. A successive itera-
tion Neumann series method has been proposed by Gelin
et al. [12], [16], where the system of singular integral equa-
tions for unknown mode amplitudes is solved by iteration via
the Neumann series. Suzuki and Koshiba [21] have devel-
oped a combined method in which the two-dimensional
finite-element method is used for the interior region enclos-
ing the waveguide discontinuities of arbitrary shape, while an
analytical approach is used for the exterior region. Recently,
Chung and Chen [29]-[31] proposed a partial variational
principle for the analysis of waveguide discontinuity prob-
lems. In their method, the interior fields are also re”.e-
sented by finite-element nodal values, but the exterior fieids
are expanded as a function of the nodal values at the
discontinuity region through the Green’s function of the
uniform slab waveguide. The advantage of this method is
that in the transverse direction, the finite-element boundary
can be placed very close to the discontinuity region, resulting
in savings in computer resources.

In addition to the above methods, the beam-propagation
method (BPM) [33]-[37] has been proposed to calculate the
propagation of waveguide modes through waveguide discon-
tinuities. Though an efficient method, the BPM is an approx-
imate method requiring the wave to be paraxial. Further-
more, the refractive index contrast cannot be too high, and
reflected waves are not accounted for. Hence, it is good only
for low contrast and gradual bends in optical waveguides.

The previous methods are useful when the region of
discontinuity is not very large. However, for some problems
encountered in practice, the region of discontinuity is large
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Fig. 1. Typical waveguide discontinuities studied in the paper: (q)
symmetric multistep discontinuities; (b) asymmetric multistep disconti-
nuities; and (c) waveguide misalignments and waveguide bends.

or the step discontinuities are numerous. Then these meth-
ods are ineffective in solving such problems. For the various
mode matching methods, because of the large number of
discontinuities, the formulation will become too laborious to
carry out. While for the two-dimensional finite element
method and the partial variational method, the number of
unknowns required to represent the problem well will be-
come too large. In addition, many of the above methods use
PEC or PMC for the symmetric waveguide geometries in
order to reduce the number of unknowns required. This will
not be possible for the asymmetric waveguide geometries.

In this paper, an efficient eigenmode propagation method
(EPM) is proposed to solve various problems where the
discontinuity is large or the number of step discontinuities is
large, as shown in Fig. 1. The eigenmode propagation method
is based on the numerical mode matching method previously
developed for the analysis of multiregion, vertically stratified
media [38]-[40]. In Sections II and III, the theory of the
eigenmode propagation method is presented. A variety of
planar waveguide discontinuity problems are solved numeri-
cally in Section IV to demonstrate the use of the eigenmode
propagation method.

I1I. EiGeNnMODE PROPAGATION METHOD

In this section, we shall describe the eigenmode propaga-
tion method (EPM). This method will account for multiple
reflections in all the inhomogeneous regions. Hence, all the
physics are correctly accounted for. The only approximation
comes from the numerical implementation of the method.

We first consider the canonical solution of the reflection
and transmission of waves by one junction discontinuity. The
physics of reflection and transmission are described by re-
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Fig. 2. A single-step discontinuity with two different layered media
separated by a junction.

flection and transmission operators. With the solution of
scattering by one junction discontinuity, we can obtain the
solution to two junction discontinuities. Then a recursive
algorithm can be derived such that the scattering due to
N +1 junction discontinuities is obtained from the scattering
due to N junction discontinuities. This is similar in spirit to
the algorithm proposed in [41]-[43].

A. One-Junction Discontinuity Case

For simplicity, we shall illustrate the concept of EPM with
the scalar wave equation. The generalization to vector wave
equations can be done easily [25], [27]. Consider the single
junction discontinuity shown in Fig. 2. Let us assume that the
equation governing the wave propagation in this inhomoge-
neous medium is

Vip(r)+k*(r)¢(r) =0 (1)

where k2(r) is a function of position. It should be pointed
out that the above equation is true only for TE waves [25].
But for the convenience of discussion, we will show only the
treatment of (1) (for TE waves) in this subsection to eluci-
date the gist of the method. In either region of the medium
shown in Fig. 2 where k2 is independent of z, the above can
be written as
62
V2 k(2 y) + o5 |#(x, y)e T =0

(2)

or

[V +k2(x,y) — k2] (x,9) =0. (2a)

In order to solve this equation for a uniform waveguide, we
use the one-dimensional finite element method, and the
unbounded waveguide structure is approximated by a
bounded waveguide so as to discretize the continuous radia-
tion spectrum (see [25], [39], [40], and [44]). With these
approximations, the above can be converted into a matrix
equation by letting

M

m=1

(3)



424

where ¢,(x,y) is some finite element basis set that can
approximate ¢(x, y) fairly well even when M is finite. Using
(3) in (2a) and multiplying the result by ¢,,(x, y) and inte-
grating over the support of ¢, (x, y), we have

M

,,,[ (Vs Vit + s K> = K2 s 0] = 0.

m—
4)
The above is a matrix eigenvalue problem of the form
—k?B-a=0 (5)
where
(L] = = Vlhs Veth) + i k2> (62)
[Blnim = Wty - (6b)

M eigenvalues and M eigenvectors can be obtained by
solving (5). The eigenfunctions can be reconstructed using
(3). For example, with the ath eigenvalue and eigenvector
from (5), the ath eigenfunction is

M
L (X, 9) g (7)

m=1

dalx,y) =

The general solution in region j as shown in Fig. 2 can be
expanded in terms of these M eigenfunctions as
M
$(x,y)= ¥ do(x,y)[e*=A, +e *=B,]. (8)
a=1
The use of vectorial notation [22], [25] allows us to write the
above as

o(x,y) = ¢'(x,y) [eF:* A+ e K2 B] 9

where ¢(x, y) is a column vector containing ¢,(x,y), K, is a
diagonal matrix containing k,, on the diagonal, and A and
B are column vectors containing A, and B,, respectively.

The first term in (9) is the incident wave impinging on the
junction discontinuity while the second term is the reflected
wave. We can define a reflection operator, R, ,, which is
the “ratio” of the reflected wave to the incident wave at
z =z,. Hence, the solution in region j can be formally
written as

$(x.y) = di(x,y) [eFrt+ e EG2R, - eiRen] .

(10)

By the same token, the field in region j+1 is expressible
as transmitted waves traveling in the positive z direction. We

can define a transmission operator T, ,,; to express the field
as

o(x,y) = (x,y) ¢ Brrste==p. T +1'e“?”Zj'A- (11)
The subscripts on ¢’(x, y) and K denote that they contain
the eigenfunctions and elgenvalues of the respective regions.
Boundary conditions can be used to derive R and T. For

example, the continuity of the field at z = z; 1mp11es that

¢ ()C y) (I+RJ ]+1) ¢j+](x y) (12)

and the continuity of the normal derivative of the field at
z = z; implies that

¢;(x’y)'l?jz.(1-_ Ej,j+1) ¢]+1(x Y)

J.i+1

j+1,z° j+1

(13)
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Fig. 3. Reflection field from an N+ 1-region geometry. The N +1-
region problem is decomposed as the sum of the first N-region problem
and the (N + 1)th region. The total reflection field is the sum of all the
possible multiple reflections from the first N regions and the (N + 1)th
region.

From (7), we can express &'(x,y)='(x,y) @, where
¥(x,y) is a column vector containing #,(x,y) and @ is a
matrix containing a,,,. If the same basis is used for both
regions, (12) and (13) simplify to

a, (I+R; ;)=

aj'l?jz'(i_Rj,j+1) =‘71+1 K; j+1,z °T; ji+1e

a1 T (14a)
(14b)

The above are matrix equations from which the matrix
operators R; . ; and T, ; ., can be found. The above deriva-
tion is easily generalized to the vector electromagnetic wave

case [25], [27].

B. The Recursive Algorithm for EPM

The above shows how the reflection and transmission
operators for a single interface in a two-region problem can
be derived. We shall derive a recursive algorithm from which
the (N + 1)-region reflection and transmission operators can
be found given the reflection and transmission operators of
an N-region problem.

Given the solution of the N-region problem, the solution
in region 1 can be written as

d)(x, y) = d)tl(x’ y) . [ell?lz(z—dl) + e_il_(lz(z_dl).ipl(N)] A.
(15)
The solution in region N is expressed as
#(x,y) = di(x, Y)'eiRNZ(Z—dN—I)'Tpl(N)'A‘ (16)

In the above, R,y and T, pivy denote the generalized
reflection operator and transmission operator respectively
for the N-region problem when the wave is incident from
region 1. The subscript p is introduced to denote the quanti-
ties for TE (to z) waves and TM (to z) waves. For TE waves,
P = h, while for TM waves, p = e. In addition to Rpl( ~y and
T,y We assume that R PNCN) and 7,5y, are also known for
the case where the wave is incident from region N.

When an additional (N +1)th region is added with a
boundary at z =d,, the transmitted wave in region N will
be multiply reflected and transmitted. We can trace the
multiply reflected wave as follows:

Consider first the case where a wave is incident from
region 1. By tracing the multiply reflected wave in region N,
the “ray” denoted by “1” in Fig. 3 is a consequence of the
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transmitted wave in region N being reflected once by the
boundary at z =d, and emerges in region 1 after passing
through the “slab” region bounded by d; and dy_,. Its
amplitude is given by

(17)

vy o' Ron w1 Pon* Ty 4
where
PTpN = eiKpNz(dN_dN—n) (18)

is the propagator matrix in region N that propagates the
eigenmodes through a distance of dy —dy._;

Similarly, the reflected “ray” denoted by “2” is a conse-
quence of double reflections in region N before emerging in
region 1. Its amplitude is given by

Tonevy Pon Ron N1 Pon* Rpnewy

‘(PpN ) RpN,N+1' PpN ' Tpl(N)) ‘A. (19)
By the same token, the third “ray” can be traced and so on.
Consequently, the reflection operator for the (N + 1)-region
geometry incorporating multiple reflections when the wave is
incident from region 1 is (see [39] and [44])

Riv+n= Rpiny + Tovwy

[I pN RpN N+1 PpN RpN(N)]
(20)

In the above, we have finally expressed the generalized
reflection operator for (N + 1)-region geometry in terms of
that for N regions and the local reflection operator R,y v
for the junction discontinuity between regions N and N +1.

The generalized transmission operator T, ., for the
(N +1)-region geometry can also be expressed in terms of
the generalized reflection and trarismission operators for the
N-region geometry and the local reflection and transmission
operators for the interface of regions N ard N +1. Similar
to the analysis for the (N + 1)-region reflection operator, the
(N +1)-region transmission operator can be shown to be

'PpN'RpN,N+1' PpN ’ Tpl(N)'

7}:1(N+1) = IpN,N+1

[I PpN RpN(N) PpN RpN N+1] Tpl(N)‘
(21)

Equations (20) and (21) are the recursive relations for the
(N +1)-region generalized reflection and transmission oper-
ators when the incident wave is from region 1 in terms of the
N-region generalized reflection and transmission operators.
Similarly, when the incident wave is from region N +1, we
can find the (N + 1)-region generalized reflection and trans-
mission operators from the N-region generallzed reflection
and transmission operators. The (N +1)-region generalized
reflection operator is

Royiinv+y= Ronei,n T Ton N+

(1= Py Roneny Pon By, 1]

'PpN'RpN(N)‘PpN'TpN+1,N (22)

and the (N + 1)-region generalized transmission operator is
Tonveun+n= pN(N)’PpN

'[i—ﬁpN,NH'T’pN'EpN(N) ]
(23)

pN+1 N- -
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These operators are now expressed in terms of the N-region
generalized reflection and transmission operators.

The above recursive relations for the generalized reflec-
tion and transmission operators are very suitable for the
analysis of slab waveguide multistep discontinuities. Starting
from a two-region problem where the local reflection and
transmission operators are equal to the generalized reflec-
tion and transmission operators, we can find those operators
for a three-region problem by using the above relations. This
procedure can be applied recursively to problems with more
regions. In each step of the whole procedure, only the
storage of generalized operators and that of the new local
reflection and transmission operators are required. There-
fore, the storage requirement is a constant independent of
the number of step discontinuities. On the other hand, it is
easy to see that the computation time for a multistep discon-
tinuity problem is- linearly proportional to the number of
steps. This is a very important feature of this eigenmode
propagation method.

IIL.

In the last section, we have derived the recursive relations
for the generalized reflection and transmission operators
which characterize the reﬂected field and transmitted field
from a multiregion, vertlcally stratified medium. Using the
results of previous work [25], [27], [38]-[40], these operators
are easily defined for the x components of the field. Then
the scattering parameters for the waveguide structure can be
related to these operators.

Let us first find the scattering parameters for the TM wave
[25], [27], [38]-[40] in the waveguide discontinuities. For the
general slab waveguide structure shown in Fig. 1, it is as-
sumed that the x component of the incident electric field (in
region 1) is

SCATTERING PARAMETERS

DYQ = fetl'Ael = St'Eél'Ael (24)

where A4,, contains the coefficients of the eigenmode expan-
sion, f.1 contains the eigenmodes of region 1, and § con-
tains the basis functions ¢, for the eigenmodes. For the TM
wave, the nonzero field components are (E,, H,, E,). The y
component of the magnetic field can be found from the x
component of electric field:

HY=S"H, A, (25)
where the matrix H,, is given by
H, =B} K. (25a)
The total incident power is
oL O, go*
P —ERef_w[Elx-Hly | dx
1 _ B -
=5Re[<A21'Be1's'€1 (x)-S 'Heﬂf'Afl>]
! t g el H* 4%
=5R3[Ae1'3e1'€1 'Hel’Aen] (26)

where the superscript T denotes the complex conjugate of
the transposed matrix.
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For an (N —1)-step discontinuity (i.e., N-region) problem,
the x components of the reflected and transmitted electric
fields are given by

Dgrx) = St'Eél'Ee1(N)'Ae1 (27)
D1(\23 = St'EéN‘Tel(N)'Ael (28)

from which the y components of the magnetic fields can be
obtained:

Hl(;) == St'ﬁel'iel(N)'Ael (29)
ng)? = st'ﬁeN'Tel(N)'Ael- (30)

From the above, we can find the reflected power:
1 _ - i — =
P = Py Re [Atl'Rf.»l(N)'Bel'El I'He"f'Rfﬁ(N)'Aik] (31)
and the transmitted power:

1 _ _ —
PR= P Re [Atl Tetl(N)'BeN'EI—\II'H:](V'TeT(N)'A?‘] - (32)
The above is for the case where the incident field is from
region 1. If the incident field is from region N, it is easy to
find the corresponding incident power P,_,(I‘\}, reflected power
P, and transmitted power PS’. From the above equations,
we can find the scattering parameters for the waveguide
discontinuities for different waveguide modes. If it is sup-
posed that the incident wave is the n,th surface mode
(normalized), it is easy to show that the reflection coefficient
for this mode is

Ry = [Rel(N)] gys My (33)
and the corresponding power reflectivity is
2
Fen = IRenl” (34)

The transmission coefficient for the n,yth surface mode in
region N is given by

Re([l—(elz n,,n 1) =
T, v= — e T 35
“w Re([KeNZ]neN’neN) [ el(N)] e e ( )
and the power transmittivity is
tan = |Te1N12~ (36)

When the incident field is from region N, we can find the
corresponding reflection and transmission coefficients for
the above modes as

(37)

Roni= [EeN(N)]n

eN TleN

Re ([EeNZ]”eN’neN)
Re([Kelz]nel,n“)

The above is for the scattering parameters of the TM wave.
For the TE wave, these parameters can be found easily by
using the duality from the above equations.

TeNl = [T‘;N(N)]"el:”m' (38)

IV. RESULTS AND APPLICATIONS

In this section, symmetric and asymmetric multistep dis-
continuities, which are particularly useful in grating couplers
and distributed feedback lasers, are studied for reflectivity of

the periodic corrugations of finite length. In these studies,
we will assume that the waveguide material is lossless and
that the waves are normally incident on the waveguide struc-
tures (i.e., k = 0). In normal incidence of the waves, there is
no coupling between TE and TM waves, so the treatment of
these two different polarizations can be performed sepa-
rately. In the following numerical examples; the dimension of
a bounded waveguide to discretize the continuous spectrum
is about 30 times larger than the thickest slab, and 45
eigenmodes are used in calculation. For more detailed choice
of basis functions, the reader is referred to [38].

A. Symmetric Multistep Discontinuities

The eigenmode propagation method can easily be used to
analyze multistep discontinuities. For this application, we
consider the periodic corrugations with finite length as shown
in Fig. 4(a), which is a waveguide with symmetric multistep
discontinuities. Each of the constituent corrugations is a
symmetric ridge-type discontinuity. A ten-corrugation struc-
ture is studied in this paper. With nkyt = 1.0, each homoge-
neous waveguide section can only propagate the TE, and
TM, fundamental modes.

We first consider a unit-powered TE, mode incident from
the left-hand side. Parts (a) and (b) of Fig. 4 show the
reflection power |R|* and transmission power |T|? versus the
period 2d normalized with the wavelength A,. As seen from
Fig. 4(a), in the range of 2d /Ay=0.30 to 2d /A, =0.90,
there are many subsidiary reflection peaks in addition to the
first strong reflection peak at around 2d /A, = 0.406 and the
second strong reflection peak at around 2d /A,=0.825.
These two strong reflection peaks correspond to the first two
Bragg reflections. Between the two strong reflection peaks,
there are nine subsidiary peaks (the amplitude of the ninth
subsidiary peak is less than —40 dB). If the structure under
consideration is infinite in length, the first Bragg reflection
will occur at 2d /A = 0.406, and the second Bragg reflection
at 2d /Ay =0.812. The shift of the second Bragg reflection
will diminish if the number of corrugations is increased. The
reflection of the TE, mode by this structure is studied in
[32], and a comparison of our results with those in [32] shows
excellent agreement. For the sake of clarity, we do not
display their result in the figure. Interested readers are
referred to their paper. The transmission power versus 2d is
shown in Fig. 4(b), where a valley occurs at 2d /Ay = 0.406.

Next the scattering of the TM,, mode is studied. Shown in
Fig. 4(c) and (d) are the reflection and transmission powers,
respectively, versus the normalized period 2d. It is noted
from Fig. 4(c) that the first strong reflection for the TM,
surface mode appears at around 2d /A, = 0.448, correspond-
ing to the first Bragg reflection of the periodic corrugation
with infinite length for the TM;, mode. The transmission
power shown in Fig. 4(d) has a valley at 2d /A, = 0.448. The
curves shown in these figures characterize the grating filter
performance of the periodic corrugations with finite length.
They are important in the design of various grating filters.

B. Asymmetric Multistep Discontinuities

As stated before, both the numerical method and the
computer program are developed for an arbitrary number of
discontinuities with arbitrary shapes. Therefore, the numeri-
cal method can be used to analyze various types of asymmet-
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Fig. 4. Reflection and transmission powers of a symmetric multistep discontinuity with ten corrugations versus the period
2d /Ay The parameters are n= 1.5 and kyt = 2/3. (a) Reflection power for the TE, mode. (b) Transmission power for the
TE, mode. (c) Reflection power for the TM,, mode. (d) Transmission power for the TM,, mode.

ric multistep waveguide discontinuities. As a result of the
interest in distributed feedback lasers, we will study asym-
metric muitistep discontinuities in this subsection.

We will first prove the efficiency of the eigenmode propa-
gation method by studying the computation time and com-
puter memory required for different numbers of discontinu-
ities. For the asymmetric double-step discontinuity, it has
been found that the first peak of the reflection coefficient for
the TM, mode appears at about a /d =1.5. Therefore, we
will take the double-step discontinuity ¢ = 1.5d as a unit of
the multistep discontinuity shown in the inset of Fig. 5(a). By
increasing the number of units, we will study the efficiency of
our algorithm and the behavior of the reflection and trans-
mission coefficients.

Shown in Fig. 5(a) is the CPU time required for the
computer program to generate the results. It is seen that the
time increases linearly with respect to the number of units. It
takes about 11 s on a CONVEX supercomputer for one unit;

while it takes about 110 s for ten units. On the other hand,
the computer storage does not change with the increase of
the number of units. It is worth mentioning that since no
periodic properties of the structure have been used, the
computation time and the computer memory required will
remain the same even if all the constituent discontinuities
are different. If the periodic properties are used for the
computation of the periodic structures shown in Figs. 4(a)
and 5(a), the computation time will be greatly reduced. From
the above results, it is seen that the EPM is very efficient,
and is particularly well suited for analyzing various multistep
discontinuities.

In Fig. 5(b), we show the reflection and transmission
coefficients for TE, and TM, modes as functions of the
number of units in the multistep discontinuity. As seen from
the figure, when the number of units increases from 1 to 10,
the reflection coefficient for the TE; mode increases to
about 0.585, while that for the TM; mode increases to about
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Fig. 5. An asymmetric multistep discontinuity consisting of a series of
asymmetric double-step discontinuities shown in Fig. 6(b) with a /d =
1.5. (a) CPU time versus the number of units. (b) Amplitudes of
reflection and transmission coefficients for TE, and TM,, modes versus
the number of units.

0.851. Meanwhile, the transmission coefficient for the TM,,
mode decreases to 0.02, and that for TE, decreases to 0.340.

Another problem of interest is the effect of the period L
on the reflection and transmission coefficients. Shown in Fig.
6(a) is a distributed feedback laser with ten units of double
steps. Different from the structure shown in the inset of Fig.
4(a), this is an asymmetric periodic corrugation of finite
length. In Fig. 6(a), we show the reflection and transmission
coefficients for the TE, mode as functions of the period L.
Oscillations are observed for both curves, where a broad
peak appears for the TE, reflection coefficient at 2.8 < L /d
<3.05. Owing to the finite corrugation and the strong dis-
continuities of the problem, a rather complicated feature of
the reflection and transmission coefficients occurs.

For the TM;, mode, the reflection and transmission coeffi-
cients shown in Fig. 6(b) also have some oscillations. It is
noted that when L /d increases to about 2.7, the reflection
coefficient for the TM, mode increases sharply. In the range
2.8 < L /d <3.1, the reflection coefficient has a broad peak.
Comparing the curves for the TE, mode and the TM, mode,
one notices that the reflection and transmission coefficients

Amplitudes of R and T (TE mode)

0.9

08

Amplitudes of Al and T (FM made)

——  [R| (TM mode)}

()

Fig. 6. Amplitudes of reflection and transmission coefficients versus
the period L of a ten-unit periodic corrugation of finite length. (a)
Reflection and transmission coefficients for TE, mode. (b) Reflection
and transmission coefficients for TM, mode.

for the TM;, mode have fewer oscillations and that the main
peak for the TM;, mode is relatively flat. This kind of
information is useful in designing of distributed feedback
lasers and other optical components.

V. CoNCLUSION

An efficient eigenmode propagation method (EMP) for
the analysis of various discontinuities in slab dielectric wave-
guides has been proposed. The method is based on the
numerical mode matching method for the multiregion, verti-
cally stratified medium. The local reflection and transmission
operators are used to characterize the scattering at an indi-
vidual interface, while the generalized reflection and trans-
mission operators are used to characterize the total scatter-
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ing by the whole structure, which consists of several step
discontinuities. The generalized reflection and transmission
operators can be found using a recursive algorithm. Finally,
the scattering parameters for the multistep, multimode wave-
guide structure are related to these generalized reflection
and transmission operators. The EPM has been applied to
solve a variety of slab waveguide discontinuity problems,
including symmetric and asymmetric multistep discontinu-
ities for both TE and TM incidences. It is shown that the
CPU time required for the computer program is linearly
proportional to the number of step discontinuities and that
the storage requirement does not increase with the number
of step discontinuities.
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